Agilent Human, Mouse, and Rat miRNA Microarrays

Product Note

Agilent has developed a microarray-based application for studying microRNAs (miRNAs) that combines a unique miRNA direct labeling method with our innovative probe design and established high-performance SurePrint inkjet synthesis technology. The creation of complete miRNA expression profiles using robust and highly sensitive microarrays allows you to gain broad insight into human, mouse, or rat miRNA expression and regulation. This capability offers a unique opportunity to develop a confident and clear picture of the intricate expression networks and systems that impact your genomics research.

MicroRNAs (miRNAs) are a prevalent class of small single-stranded non-coding RNAs (19-30 nts long). They serve widespread functions as regulatory molecules in post-transcriptional gene silencing and have recently emerged as crucial regulators of gene expression, development, proliferation and differentiation, and apoptosis.

Since the discovery of miRNAs in 1993, the number of miRNAs in the Sanger miRBASE database has rapidly increased. Precursor miRNAs (based on miRBASE) have been found to date in virtually all species—animals, plants, and viruses. As many as one-third of all mammalian genes may be miRNA-regulated. This diverse yet fundamentally conserved group of small RNAs may rival classical transcription factors in their role and involvement in modulating the complex regulatory circuitry found in cells.

Implications for Cancer Research

Much recent human cancer research has been intensely focused on studying and understanding miRNA expression. Gene expression pattern changes resulting from altered and/or aberrant miRNA expression fingerprints may be a key determinant of their ultimate function—oncogene or tumor suppressor. Clearly, miRNA expression signatures are invaluable and hold great promise in human disease characterization, potentially as prognostic indicators for chemotherapy, diagnostic markers for tumor classification, and biomarkers.
Innovative Labeling and Probe Design

The Agilent miRNA microarray is the only array-based high-throughput system that delivers the optimal sensitivity and specificity for both sequence and size discrimination, even between closely-related mature miRNAs. This superior performance results from our unique probe design, highly efficient direct labeling method, and our proprietary SurePrint inkjet technology, which synthesizes 40–60-mer oligonucleotide probes directly on the array, resulting in high-purity, high-fidelity probes.

The small size of miRNA represents a particularly unique challenge for hybridization-based detection methods, requiring a novel labeling and design strategy compared to those used with conventional genomic and mRNA targets. Agilent’s innovative probe design and in situ-synthesized probes have minimal sequence bias and use unmodified DNA oligonucleotides.

The Agilent miRNA platform requires small input amounts of total RNA—in the 100 nanogram range—because it uses a high-yield labeling method and it does not require size fractionation or amplification steps that may introduce undesired bias during miRNA profiling. The simple, straightforward experimental protocol allows sample dephosphorylation and direct labeling to take place in the same tube. Unlike conventional polymerase-based methods, this end-labeling method is insensitive to nucleotide damage within the substrate RNA and is advantageous for working with preserved or chemically treated samples.

To achieve highest sequence specificity, all probe-target interactions should ideally have the same stability under the assay conditions. In situations where the probe-target duplex is too stable (potentially resulting in nonspecific interactions), the hybridization is optimized through reduction from the 5’ end of the miRNA. This design optimization improves the final specificity of the probes.

Explore in detail further research highlights from the publication “Direct and Sensitive miRNA Profiling From Low Input Total RNA” (Wang et al) from RNA (2007) 13(1):151-59. This scientific publication can be found at: www.opengenomics.com/miRNA
Precise miRNA Discrimination

Agilent miRNA probes can accurately discriminate between similar sizes and sequences, as demonstrated by studies with 19 synthetic human miRNAs with high sequence homology to other miRNAs. These show low cross-hybridization for miRNAs differing by >1 nt. With the well-studied human let-7 family of miRNAs, probe-target sequence cross-hybridizations >5% were observed in less than 10% of 56 potential cross-hybridization events. miRNA families such as the hsa-miR-196 and hsa-miR-30 showed cross-hybridizations of <1%.

Flexibility for the Evolving miRNA Landscape

Our SurePrint technology, probe design methods, and printing formats are powerful components of the Agilent integrated platform that allow for regular and ongoing content updates to accommodate newly discovered sequences in the continuously evolving miRNA landscape. Agilent printing formats can accommodate significant increases in the number of sequences for comprehensive yet convenient coverage.

Integrated Platform

As part of the Agilent integrated and comprehensive portfolio of proven microarray-based genomics tools, miRNA profiling is synergistic with our gene expression and array-based CGH solutions. Agilent’s core microarray technology for miRNA encompasses sample labeling and an integrated experimental workflow, as well as data analysis, visualization, and comparison across multiple applications. By enabling you to answer complex questions at the intersection of transcriptomics, genetics, and proteomics you get the whole story.

Key Features and Benefits

Significant advantages such as optimized probe design method and labeling protocols, as described in Wang et al., are the basis for Agilent’s commercial miRNA profiling solution. Our microarrays contain ~15,000 features printed in an 8-plex format (eight individual microarrays on a 1” x 3” glass slide), each containing probes and annotation information for all human miRNAs sourced from the Sanger miRBASE public database.

- **Low sample input** – 100 ng total RNA requirement enables analysis of limited samples (fine needle aspirates, blood, plasma, etc.)
- **High sensitivity and specificity** – unique probe design allows confident detection of both low-abundance and highly homologous miRNAs
- **Broad linear dynamic range** – spans over five orders of magnitude and ensures thorough and comprehensive profiling of all miRNAs across their biologically occurring range of expression
- **Low detection limit** – detection of synthetic miRNAs at concentrations less than 0.1 amol
- **Quality support** – QC metrics for quality assessment

“Lung cancer is the leading cause of cancer-related deaths in Japan. We have shown for the first time that let-7 expression is frequently reduced in lung cancers and that alterations in miRNA expression may have a prognostic impact on survival of surgically-treated lung cancer patients. Agilent gives us a comprehensive miRNA expression profile with excellent performance on sensitivity and accuracy. I expect that studies with the Agilent miRNA array may ultimately provide a foundation for a new paradigm of the involvement of miRNA in human oncogenesis.”

—Dr. Takashi Takahashi
Professor of Oncology, Molecular Carcinogenesis
Nagoya University

www.agilent.com/chem/miRNA
miRNA Microarray Specifics & Ordering Details

<table>
<thead>
<tr>
<th></th>
<th>Human Genome</th>
<th>Human Release 12.0</th>
<th>Mouse Genome V1</th>
<th>Mouse Release 12.0</th>
<th>Rat Genome V1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>G4470A</td>
<td>G4470A</td>
<td>G4471A</td>
<td>G4472A</td>
<td>G4473A</td>
</tr>
<tr>
<td>Design ID</td>
<td>016436</td>
<td>019118</td>
<td>021827</td>
<td>019119</td>
<td>021828</td>
</tr>
<tr>
<td>Slides per kit</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sequence source</td>
<td>Sanger 9.1</td>
<td>Sanger 10.1</td>
<td>Sanger 12.0</td>
<td>Sanger 10.1</td>
<td>Sanger 12.0</td>
</tr>
<tr>
<td>No. miRNAs targeted</td>
<td>470</td>
<td>723</td>
<td>866</td>
<td>567</td>
<td>627</td>
</tr>
<tr>
<td>No. viral miRNAs</td>
<td>64</td>
<td>76</td>
<td>89</td>
<td>10</td>
<td>39</td>
</tr>
</tbody>
</table>

miRNA Microarray General Specifications

- Format: 8x15K
- Microarrays per slide: 8 (8-plex)
- Slide format: 1" x 3"
- Probe length: 60-mer
- Feature size: 65 µm
- Replicate features per miRNA: 16-20
- Total features: ~15000
- Input amount: 100 ng
- Starting sample input: total RNA
- Labeling type: Direct end labeling using Cyanine 3 pCp
- Overall assay time: <2 days
- Storage condition for microarray: Room temperature (in the dark)
- Storage condition for Cyanine 3 pCp: −20°C

miRNA Microarray Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>miRNA Complete Labeling and Hyb Kit</td>
<td>5190-0456</td>
</tr>
<tr>
<td>Hybridization chamber</td>
<td>G2534A</td>
</tr>
<tr>
<td>Hybridization gasket slide</td>
<td>G2534-60014</td>
</tr>
</tbody>
</table>

About Agilent Technologies
Agilent Technologies is a leading supplier of life science research systems that enable scientists to understand complex biological processes, determine disease mechanisms, and speed drug discovery. Engineered for sensitivity, reproducibility, and workflow productivity, Agilent’s life science solutions include instrumentation, microfluidics, software, microarrays, consumables, and services for genomics, proteomics, and metabolomics applications.

Learn more:
www.agilent.com/chem/miRNA

Buy online:
www.agilent.com/chem/store

Find an Agilent customer center in your country:
www.agilent.com/chem/contactus

U.S. and Canada
1-800-227-9770
tagilent_inquiries@agilent.com

Asia Pacific
adinquiry_aplsca@agilent.com

Europe
tagilent@agilent.com

This item is intended for Research Use Only. Not for use in diagnostic procedures. Information, descriptions, and specifications in this publication are subject to change without notice.

Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

© Agilent Technologies, Inc. 2009
Published in the U.S.A. January 16, 2009
5989-7688EN